
Let’s Get Physical

Optimizing big data for fun and profit (or at least lower
costs and query times)

Keith Gregory
AWS Practice Lead, Chariot Solutions

Definitions
Logical Design

Your business entities (customers, accounts, transactions, …) and the
relationships between them

Physical Design

Table structure, indexes, and data placement, which together define
the performance of your database system

Big Data

Anything that’s too large to fit on your laptop

Characteristics of “Big Data” queries
Table Scans

“Find me all of the customers that have done X”

Multi-table Joins, Outer Joins, Sub-queries

Example: transaction volume for customers who opened their first
account in the past year, by geographic region

Often restricted by date range

“What have my customers done for me lately”

Two Approaches to “Big Data”
Star Schema

A “fact” table that holds fine-grained aggregations by “dimensions”

Allows “slice and dice” of facts, but only by predefined dimensions

Example: sales by date, product, state, region, …

Relational

A multi-table model that’s based on existing business entities

Allows “exploratory” queries, still supports dimensional aggregation

Example: customers, accounts, transactions

Seymour Cray Was Wrong

Sometimes, 1024 chickens are
better than two strong oxen

Redshift

Architecture

source:
https://web.archive.org/web/20130220201730/https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_sy
stem_architecture.html

https://web.archive.org/web/20130220201730/https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html
https://web.archive.org/web/20130220201730/https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html

Table Distribution Styles
EVEN

Rows are distributed across nodes in a round-robin manner

ALL

All rows are replicated on all nodes

KEY

Rows are distributed based on the hash of a single column

Distribute on Join Column, not Primary Key

CUSTOMERS

CUSTOMER_ID
…

ACCOUNTS

ACCOUNT_ID
CUSTOMER_ID
…

TRANSACTIONS

TRANSACTION_ID
ACCOUNT_ID
…

1 1M M
TRANSACTIONS

TRANSACTION_ID
ACCOUNT_ID
…

ACCOUNTS

ACCOUNT_ID
CUSTOMER_ID
…

Denormalization Can Be Your Friend

CUSTOMERS

CUSTOMER_ID
…

ACCOUNTS

ACCOUNT_ID
CUSTOMER_ID
…

TRANSACTIONS

TRANSACTION_ID
ACCOUNT_ID
…

1 1M M
TRANSACTIONS

TRANSACTION_ID
ACCOUNT_ID
CUSTOMER_ID
…

ACCOUNTS

ACCOUNT_ID
CUSTOMER_ID
…

CUSTOMERS

CUSTOMER_ID
…

1 1M M

Query-time Redistribution
DS_DIST_NONE

No distribution; joins can be performed in parallel

DS_DIST_OUTER / DS_DIST_INNER

One table is redistributed to match the other

DS_DIST_BOTH

Both tables are redistributed by join key – usually happens because tables
creation defaults to EVEN distribution.

DS_BCAST_INNER

Inner table is replicated on all nodes – almost always indicates a bad query

explain

select productid,

 (views - adds) as diff

from (

 select pp.productid as productid,

 count(distinct pp.eventid) as views,

 count(distinct atc.eventid) as adds

 from "public"."product_page" pp

 left join "public"."add_to_cart" atc

 on atc.userid = pp.userid

 and atc.productid = pp.productid

 group by pp.productid

)

order by 2 desc

limit 10;

XN Limit

 -> XN Merge

 Merge Key: (count(DISTINCT pp.eventid) - count(DISTINCT atc.eventid))

 -> XN Network

 Send to leader

 -> XN Sort

 Sort Key: (count(DISTINCT pp.eventid) - count(DISTINCT atc.eventid))

 -> XN HashAggregate

 -> XN Hash Left Join DS_DIST_NONE

 Hash Cond: ((("outer".userid)::text = ("inner".userid)::text)

 AND (("outer".productid)::text = ("inner".productid)::text))

 -> XN Seq Scan on product_page pp

 -> XN Hash

 -> XN Seq Scan on add_to_cart atc

Redshift, you got some ’splaining to do!

Unbalanced Data

One node has more data than the others

Often happens when distribution column contains nulls

Row-oriented versus Column-oriented

source: https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

https://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

Sort Keys

A list of columns that defines the physical order of
rows in the table

When sort key used in the WHERE clause, Redshift can
ignore blocks that don’t contain relevant data

Two forms of multi-column sort keys:

Compound: hierarchical sorting based on order of columns

Interleaved: all columns (up to 8) have equal representation

Sorting on timestamp (by itself) is usually best

Data Compression

Redshift can compress each column individually

By default, Redshift auto-configures compression

This only “works” for long-lived tables

ANALYZE COMPRESSION to identify best mechanism

Athena SQL

Architecture

Controller

WorkerWorkerWorkerWorker …

Data
Catalog

Avro: a row-oriented format that includes a schema

CSV: the old standby, albeit not well-defined

JSON: the new hotness

ORC: a columnar format used by Hadoop

Parquet: a columnar format used by Hadoop

Text: if it can be turned into fields via regex

Avro: a row-oriented format that includes a schema

CSV: the old standby, albeit not well-defined

JSON: the new hotness

ORC: a columnar format used by Hadoop

Parquet: a columnar format used by Hadoop

Text: if it can be turned into fields via regex

Supported File Formats

Pick the Right File Size

Tradeoff:

Bigger files reduce overhead

More files allow more workers to run in parallel

Some numbers: counting CloudTrail events

Raw CloudTrail logs (1,637,376 files): 3 minutes 15 seconds

Aggregated by date (684 files): 6.3 seconds

One 1.76 GB file: 1 minute 44 seconds

Partition Data

Allows Athena to read only some of your files

Incorporates information into S3 prefix

Two formats:

s3://BUCKET/TABLE/VALUE/VALUE/FILENAME

s3://BUCKET/TABLE/COLNAME=VALUE/COLNAME=VALUE/FILENAME

Example:

s3://clickstream-data/add_to_cart/2023/08/…

Partitioned Table Definition
CREATE EXTERNAL TABLE `cloudtrail_projected`

(

 `eventtime` string COMMENT 'from deserializer',

 `eventname` string COMMENT 'from deserializer',

 `awsregion` string COMMENT 'from deserializer',

 `recipientaccountid` string COMMENT 'from deserializer',

 ...

)

PARTITIONED BY (

 `account_id` string,

 `region` string,

 `ingest_date` string

)

LOCATION

 's3://com-chariotsolutions-cloudtrail/AWSLogs/o-x72e8b2quf'

TBLPROPERTIES (

 ...

'storage.location.template'='s3://com-chariotsolutions-cloudtrail/AWSLogs/o-x72e8b2quf/${accoun

t_id}/CloudTrail/${region}/${ingest_date}',

)

Querying with Partitions
Must specify partition values in WHERE clause

SELECT count(*) as event_count

FROM "default"."cloudtrail_projected"

where account_id = '123456789012'

and region = 'us-east-1'

and ingest_date >= '2022/09/01'

and ingest_date < '2022/10/01'

SELECT count(*) as event_count

FROM "default"."cloudtrail_projected"

where recipientaccountid = '123456789012'

and awsregion = 'us-east-1'

and eventtime >= '2022-09-01'

and eventtime < '2022-10-01'

Run time: 2.038 sec

Data scanned: 4.30 MB

Run time: 6 min 27.47 sec

Data scanned: 13.73 GB

Count: 18,706 Count: 18,705

For performance and accuracy, combine partitions and
internal field values

Querying with Partitions, part 2

SELECT count(*) as event_count

FROM "default"."cloudtrail_projected"

where ingest_date >= '2022/08/29'

and ingest_date < '2022/10/03'

and recipientaccountid = '123456789012'

and awsregion = 'us-east-1'

and eventtime >= '2022-09-01'

and eventtime < '2022-10-01'

Run time: 49.149 sec

Data scanned: 247.55 MB

Count: 18,705

Managing Partitions
Explicit partition list in Glue Data Catalog

Glue Crawler will update automatically, otherwise must use SQL or
SDK to add/discover partitions

Projection

Defines partitions based on combinations of explicit values, ranges
of dates/numbers

Injection

Used for high cardinality partitions (eg: user ID)

All queries must include predicate on partition column

Performance Comparison

Sample Data

PRODUCT_PAGE

59,693,900 rows

ADD_TO_CART

18,523,255 rows

CHECKOUT_COMPLETE

9,853,549 rows

{

 "eventType": "productPage",

 "eventId": "6519d3be-8799-4a00-a69e-d5681047fd7d",

 "timestamp": "2023-04-24 19:10:49.234",

 "userId": "c5362ccc-7355-433d-9322-9b9b564276a5",

 "productId": "8155"

}

{

 "eventType": "addToCart",

 "eventId": "80ca509e-6493-48cc-92a1-4052045d507f",

 "timestamp": "2023-04-24 19:11:15.392",

 "userId": "c5362ccc-7355-433d-9322-9b9b564276a5",

 "productId": "8155",

 "quantity": 4

}

{

 "eventType": "checkoutComplete",

 "eventId": "aa243032-cffd-4fd7-ab9b-994e69567a76",

 "timestamp": "2023-04-24 19:16:42.581",

 "userId": "c5362ccc-7355-433d-9322-9b9b564276a5",

 "itemsInCart": 4,

 "totalValue": 6.00

}

Single-Table Aggregation
select productid,

 sum(quantity) as units_added

from "public"."add_to_cart"

group by productid

order by units_added desc

limit 10;

Athena 0.88

Provisioned, 4 dc2.large 0.49

Provisioned, 8 dc2.large 0.31

Serverless, 8 RPU 0.34

Postgres, db.m6g.xlarge 18.01

Join on Distribution Column

Athena 4.441

Provisioned, 4 dc2.large 5.805

Provisioned, 8 dc2.large 4.469

Serverless, 8 RPU 1.828

Postgres, db.m6g.xlarge 1:41.74

select count(distinct user_id)

 as users_with_abandoned_carts

from (

 select atc.userid as user_id,

 max(atc."timestamp") as max_atc_timestamp,

 max(cc."timestamp") as max_cc_timestamp

 from "public"."add_to_cart" atc

 left join "public"."checkout_complete" cc

 on cc.userid = atc.userid

 group by atc.userid

)

where max_atc_timestamp > max_cc_timestamp

or max_cc_timestamp is null;

Join on Multiple Columns

Athena 4.70

Provisioned, 4 dc2.large 31.11

Provisioned, 8 dc2.large 23.63

Serverless, 8 RPU 13.40

Postgres, db.m6g.xlarge 1:29.22

select productid,

 (views - adds) as diff

from (

 select pp.productid as productid,

 count(distinct pp.eventid) as views,

 count(distinct atc.eventid) as adds

 from "public"."product_page" pp

 left join "public"."add_to_cart" atc

 on atc.userid = pp.userid

 and atc.productid = pp.productid

 group by pp.productid

)

order by 2 desc

limit 10;

Summary

Architecture

Redshift

“Traditional” database, based on Postgres 8 SQL

Fixed number of nodes, each with its own attached disk

Joins performed in parallel; rows must have same distribution

Athena

Reads structured text from S3, using Presto database engine

Variable number of workers; probably dependent on #/files

Knobs You Can Turn

Redshift

Distribution Key

Sort Key

Compression

Athena

File Type

File Size

Partitioning

For More Information

Chariot Blog Posts

Right-sizing Data for Athena

Athena File-type Comparison (Avro, JSON, Parquet)

Athena/Redshift Performance Comparison

https://chariotsolutions.com/blog/post/rightsizing-data-for-athena/
https://chariotsolutions.com/blog/post/athena-performance-comparison/
https://chariotsolutions.com/blog/post/performance-comparison-athena-versus-redshift/

AWS Docs / Blog Posts

Top 10 Performance Tuning Tips for Amazon Athena

Query Optimization Techniques (Athena User Guide)

Partitioning data in Athena

Amazon Redshift best practices for designing tables

Amazon Redshift best practices for designing queries

(Redshift) Analyzing and improving queries

https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://docs.aws.amazon.com/athena/latest/ug/performance-tuning.html#performance-tuning-query-optimization-techniques
https://docs.aws.amazon.com/athena/latest/ug/partitions.html
https://docs.aws.amazon.com/redshift/latest/dg/c_designing-tables-best-practices.html
https://docs.aws.amazon.com/redshift/latest/dg/c_designing-queries-best-practices.html
https://docs.aws.amazon.com/redshift/latest/dg/c-query-tuning.html

Office Hours

Sign up for a one hour one-on-one to discuss Redshift,
Athena, or general data engineering practices.

Technology in the Service of Business.

Chariot Solutions is the Greater Philadelphia region’s top IT consulting firm specializing
in software development, systems integration, mobile application development and
training.

Our team includes many of the top software architects in the area, with deep technical
expertise, industry knowledge and a genuine passion for software development.

Visit us online at chariotsolutions.com.

Leader Node

Client communication

Parsing SQL queries, creating execution tasks,
gathering results

Cross-cluster aggregations

