Java Reference Objects

or

How I Learned to Stop Worrying and Love
OutOfMemoryError



Contents

Object Life Cycle
Types of Reference Objects
Memory Management with Soft and Weak References
Replacing Finalizers by Phantom References

Unit Testing with Reference Objects

Copyright 2007, Keith D Gregory



Role of Stack and Heap

Stack holds all local variables,
including method parameters
and object references

Heap holds object data
Stack

baz -

bar

public static void foo(String bar)
{

I nt eger baz = new I nteger(bar);

}

123

Copyright 2007, Keith D Gregory




Garbage Collection Process

Mark Sweep

Heap Heap

—

Compact

Heap _//////

Copyright 2007, Keith D Gregory



Object Life Cycle pre Reference Objects

Created ——P Initialized —— In Use —» Unreachable — Finalized

new operator creates the object, constructor initializes it

* These are separate steps!

In-use (reachable) when program can access it

e Chain of references from static member variable, local method
variable, or in-process expression

Unreachable when nothing points to it
e But the garbage collector only runs when JVM needs memory

e May never happen!

Finalizer is run after object is selected for collection

* Memory becomes available only after finalizer runs — if it exists

Copyright 2007, Keith D Gregory



Object Life Cycle post Reference Objects

Softly

Reachable
Created ——P Initialized —— Strongly Finalized
Reachable -
Weakly

Reachable

Phantom
Reachable

Unreachable objects are still eligible for collection

But there are different levels of unreachability

* Garbage collector is more/less aggressive

* Docs indicate strict hierarchy, that’s misleading: reachability
depends on the reference objects you use

Copyright 2007, Keith D Gregory



How Reference Objects Work

Program I Reference I
Code Object Referent

Adds a layer of indirection

e Callget() on the reference object to access referent
e get() returns null when referent is collected (reference is “cleared”)

Program must hold a strong reference to the reference
object itself

e Otherwise it will be collected

Program must hold strong reference to referent while
accessing it

* Otherwise it might be reclaimed between two statements

Phantom references are ... different

Copyright 2007, Keith D Gregory



Types of Reference Objects

SoftReference
* Doesn’t prevent garbage collector from reclaiming referent, but
asks nicely that it be left alone
e “Official” use: memory-sensitive cache

e Better use: circuit breaker

WeakReference

e Garbage collector will reclaim referent at the drop of a hat

e Useful when you want to attach data to an object with limited
lifetime

* Or for a canonicalizing map

PhantomReference

* Lets program know when garbage collector has already
marked referent for collection, allowing program-controlled
cleanup

e Can’t be used to access referent directly — get() returns null
Copyright 2007, Keith D Gregory



Reference Queues

Reference objects may be associated with a
ReferenceQueue when created, will be added

to that queue when cleared

e Program can poll ReferenceQueue to find cleared objects

* Must still hold a strong reference to the reference object, or it
will be collected — queue doesn’t hold strong reference

The only way to work with Phantom references
Also usetul for cleaning up

e Can poll with a background thread
* Or just check the queue when creating new objects

Copyright 2007, Keith D Gregory



Soft References as Circuit Breaker

Technique

e Hold large object via SoftReference  while performing
memory-intensive operations

e Switch to strong reference to update the large object
e [f reference is cleared, operation fails

Rationale

* Memory consumption tends to be localized

 Failing single operation is better than throwing
OutOfMemoryError

Not a silver bullet

* Always a window where OutOfMemoryError is possible
e Sometimes you can’t control this (eg, DOM tree)

Copyright 2007, Keith D Gregory



Code in need of a circuit breaker

public static List<List<Object>> processResults(ResultSet rslt)
throws SQLException
{
try {
Li st <Li st <Cbj ect>> results = new Li nkedLi st <Li st <Obj ect>>();
Resul t Set Met aData neta = rslt. get Met abDat a() ;
I nt col Count = neta. get Col umCount () ;
while (rslt.next())
{
Li st <Cbj ect> row = new ArrayLi st <Obj ect >(col Count);
for (int ii =1 ; ii <= colCount ; ii++)
row. add(rslt.getQoject(ii));
resul ts. add(row);
}
return results;
}
finally {
cl oseQuietly(rslt);
}
}

Copyright 2007, Keith D Gregory



Adding Soft References

Sof t Ref er ence<Li st <Li st <Cbj ect >>> r ef
= new Sof t Ref er ence<Li st <Li st <Obj ect >>>(
new Li nkedLi st <Li st <Cbj ect>>());
while (rslt.next())
{
Li st <Qhj ect> row = new ArrayLi st <Cbj ect >( col Count);
for (int ii =1 ; ii <= colCount ; ii++)
row. add(rslt.getObject(ii));
Li st <Li st <Cbj ect>> results = ref.get();
i f (results == null)
t hrow new Resul t sTooLar geException();
el se
resul ts. add(row);
results = null;
}

Copyright 2007, Keith D Gregory



Weak References for auto-clear cache

Often useful to attach data to an object via Map

e Particularly if you can’t extend / decorate the original object

 However, a normal Map can turn into a memory leak, as it
always holds a strong reference to the base object

If the map uses a weak reference, once the
program is done with the object the associated

data goes as well

e Example: ThreadLocal
e Should be used by ObjectOutputStream  , butisn’t

JDK provides WeakHashMap

e Keys are held by weak references, values by strong references
* When the weak references are cleared, map entry is removed

Copyright 2007, Keith D Gregory



Canonicalizing Maps

Always returns the same value for a given key
e Think String.intern()

Useful when processing data with duplicates

* Pass raw data through map, replace duplicated objects with
canonical object

o If there isn’t a strong reference to the object, no need to hold it
in the map — replace it next time through

Both key and value must be held via weak

reference

» WeakHashMap isn’t sufficient on its own
e But it provides a good starting point

Copyright 2007, Keith D Gregory



Interning strings via Weak References

private Map<String, WeakRef erence<Stri ng>> _map
= new WeakHashMap<Stri ng, WeakRef erence<Stri ng>>();

public static synchronized String intern(String str)

{
WeakRef erence<String> ref = map.get(str);
String s2 = (ref I'=null) ? ref.get() : null;
i f (s2 !'= null)
return s2;
_map. put (str, new WeakReference(str));
return str;
}

Copyright 2007, Keith D Gregory




The Trouble with Finalizers

Finalizers introduce a break between identifying a
dead object and reclaiming its memory

* Dead objects go into finalization queue
* If every dead object has a finalizer, you'll get OOM

Finalization takes place on a separate thread

* In practice, just one thread
* A slow finalizer can leave the heap full of uncollected objects

Finalizer may never run

* Only run when when GC identifies object as dead — if GC
doesn’t run, finalizer isn’t executed

e This applies to phantom references as well, but your program can
iterate over the references manually

Copyright 2007, Keith D Gregory



Using Phantom References

The phantom reference must be associated with a
ReferenceQueue

* The reference is enqueued when its referent is marked for collection
* The memory is not freed until the reference is dequeued!

Program accesses the referent directly, lets it go out
of scope

* Must keep a separate (strong) reference to the resources

Reference

4, 4—
Queue
Reference
Factory > Object

A i
! Resources to
; / be reclaimed

Consumer g Referent

Copyright 2007, Keith D Gregory



Phantom Reference Example

Database connection pool

* Wraps actual connection, returns wrapper
e Connection returns to pool via close()  or wrapper collection

private ReferenceQueue<Ohject> refQueue =1//

private ldentityHashMap<Obj ect, Connection> ref2Ct =//
private ldentityHashMap<Connection, Object> cxt2Ref =//
/]
private Connection w apConnecti on(Connecti on cxt)
{
Connecti on w apped = new Pool edConnection(this, cxt);
Phant onRef er ence<Connection> ref =
new Phant onRef er ence<Connecti on>(w apped, _ref Queue);
_cxt 2Ref . put (wr apped, ref);
_ref2Cxt. put(ref, wapped);
return w apped;
}

Copyright 2007, Keith D Gregory



Unit Testing and Reference Objects

It isn’t easy

* Running out of memory is harder than it looks
* System.gc() is just a hint
e Make sure that you don’t hold strong references to the referent

But you have to do it

» Reference objects become useful when living on the edge —
too easy to fall off if you don’t test

Build task-specific scaffolding

e Example: ResultSet implementation that returns large
byte[] s on every call to getObject()

Write development-only tests

e Sometimes Hotspot gets in the way

Copyright 2007, Keith D Gregory



Additional Reading

The “companion volume” to this presentation.
* http://www.kdgregory.com/index.php?page=java.refobj

Sun’s current whitepaper on tuning the garbage collector, which provides some

good background information on how the collector works (Sun JVM only).
* http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

An article from Brian Goetz, about using Weak references to associate objects with
limited lifetimes. I don’t often use this technique, so only touched on it lightly in this

presentation. I recommend reading his entire series of articles.

* http://'www.ibm.com/developerworks/java/library/j-
jtp11225/index.html?S_TACT=105AGX02&S_CMP=EDU

Copyright 2007, Keith D Gregory



