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Role of Stack and Heap

Stack holds all local variables,
including method parameters
and object references

Heap holds object data
Stack

baz -

bar

public static void foo(String bar)
{

I nt eger baz = new I nteger(bar);

}
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Garbage Collection Process

Mark Sweep
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Object Life Cycle pre Reference Objects

Created ——P Initialized —— In Use —» Unreachable — Finalized

new operator creates the object, constructor initializes it

* These are separate steps!

In-use (reachable) when program can access it

e Chain of references from static member variable, local method
variable, or in-process expression

Unreachable when nothing points to it
e But the garbage collector only runs when JVM needs memory

e May never happen!

Finalizer is run after object is selected for collection

* Memory becomes available only after finalizer runs — if it exists
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Object Life Cycle post Reference Objects

Softly

Reachable
Created ——P Initialized —— Strongly Finalized
Reachable -
Weakly

Reachable

Phantom
Reachable

Unreachable objects are still eligible for collection

But there are different levels of unreachability

* Garbage collector is more/less aggressive

* Docs indicate strict hierarchy, that’s misleading: reachability
depends on the reference objects you use
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How Reference Objects Work

Program I Reference I
Code Object Referent

Adds a layer of indirection

e Callget() on the reference object to access referent
e get() returns null when referent is collected (reference is “cleared”)

Program must hold a strong reference to the reference
object itself

e Otherwise it will be collected

Program must hold strong reference to referent while
accessing it

* Otherwise it might be reclaimed between two statements

Phantom references are ... different
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Types of Reference Objects

SoftReference
* Doesn’t prevent garbage collector from reclaiming referent, but
asks nicely that it be left alone
e “Official” use: memory-sensitive cache

e Better use: circuit breaker

WeakReference

e Garbage collector will reclaim referent at the drop of a hat

e Useful when you want to attach data to an object with limited
lifetime

* Or for a canonicalizing map

PhantomReference

* Lets program know when garbage collector has already
marked referent for collection, allowing program-controlled
cleanup

e Can’t be used to access referent directly — get() returns null
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Reference Queues

Reference objects may be associated with a
ReferenceQueue when created, will be added

to that queue when cleared

e Program can poll ReferenceQueue to find cleared objects

* Must still hold a strong reference to the reference object, or it
will be collected — queue doesn’t hold strong reference

The only way to work with Phantom references
Also usetul for cleaning up

e Can poll with a background thread
* Or just check the queue when creating new objects
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Soft References as Circuit Breaker

Technique

e Hold large object via SoftReference  while performing
memory-intensive operations

e Switch to strong reference to update the large object
e [f reference is cleared, operation fails

Rationale

* Memory consumption tends to be localized

 Failing single operation is better than throwing
OutOfMemoryError

Not a silver bullet

* Always a window where OutOfMemoryError is possible
e Sometimes you can’t control this (eg, DOM tree)
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Code in need of a circuit breaker

public static List<List<Object>> processResults(ResultSet rslt)
throws SQLException
{
try {
Li st <Li st <Cbj ect>> results = new Li nkedLi st <Li st <Obj ect>>();
Resul t Set Met aData neta = rslt. get Met abDat a() ;
I nt col Count = neta. get Col umCount () ;
while (rslt.next())
{
Li st <Cbj ect> row = new ArrayLi st <Obj ect >(col Count);
for (int ii =1 ; ii <= colCount ; ii++)
row. add(rslt.getQoject(ii));
resul ts. add(row);
}
return results;
}
finally {
cl oseQuietly(rslt);
}
}
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Adding Soft References

Sof t Ref er ence<Li st <Li st <Cbj ect >>> r ef
= new Sof t Ref er ence<Li st <Li st <Obj ect >>>(
new Li nkedLi st <Li st <Cbj ect>>());
while (rslt.next())
{
Li st <Qhj ect> row = new ArrayLi st <Cbj ect >( col Count);
for (int ii =1 ; ii <= colCount ; ii++)
row. add(rslt.getObject(ii));
Li st <Li st <Cbj ect>> results = ref.get();
i f (results == null)
t hrow new Resul t sTooLar geException();
el se
resul ts. add(row);
results = null;
}
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Weak References for auto-clear cache

Often useful to attach data to an object via Map

e Particularly if you can’t extend / decorate the original object

 However, a normal Map can turn into a memory leak, as it
always holds a strong reference to the base object

If the map uses a weak reference, once the
program is done with the object the associated

data goes as well

e Example: ThreadLocal
e Should be used by ObjectOutputStream  , butisn’t

JDK provides WeakHashMap

e Keys are held by weak references, values by strong references
* When the weak references are cleared, map entry is removed
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Canonicalizing Maps

Always returns the same value for a given key
e Think String.intern()

Useful when processing data with duplicates

* Pass raw data through map, replace duplicated objects with
canonical object

o If there isn’t a strong reference to the object, no need to hold it
in the map — replace it next time through

Both key and value must be held via weak

reference

» WeakHashMap isn’t sufficient on its own
e But it provides a good starting point
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Interning strings via Weak References

private Map<String, WeakRef erence<Stri ng>> _map
= new WeakHashMap<Stri ng, WeakRef erence<Stri ng>>();

public static synchronized String intern(String str)

{
WeakRef erence<String> ref = map.get(str);
String s2 = (ref I'=null) ? ref.get() : null;
i f (s2 !'= null)
return s2;
_map. put (str, new WeakReference(str));
return str;
}
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The Trouble with Finalizers

Finalizers introduce a break between identifying a
dead object and reclaiming its memory

* Dead objects go into finalization queue
* If every dead object has a finalizer, you'll get OOM

Finalization takes place on a separate thread

* In practice, just one thread
* A slow finalizer can leave the heap full of uncollected objects

Finalizer may never run

* Only run when when GC identifies object as dead — if GC
doesn’t run, finalizer isn’t executed

e This applies to phantom references as well, but your program can
iterate over the references manually
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Using Phantom References

The phantom reference must be associated with a
ReferenceQueue

* The reference is enqueued when its referent is marked for collection
* The memory is not freed until the reference is dequeued!

Program accesses the referent directly, lets it go out
of scope

* Must keep a separate (strong) reference to the resources

Reference

4, 4—
Queue
Reference
Factory > Object

A i
! Resources to
; / be reclaimed

Consumer g Referent
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Phantom Reference Example

Database connection pool

* Wraps actual connection, returns wrapper
e Connection returns to pool via close()  or wrapper collection

private ReferenceQueue<Ohject> refQueue =1//

private ldentityHashMap<Obj ect, Connection> ref2Ct =//
private ldentityHashMap<Connection, Object> cxt2Ref =//
/]
private Connection w apConnecti on(Connecti on cxt)
{
Connecti on w apped = new Pool edConnection(this, cxt);
Phant onRef er ence<Connection> ref =
new Phant onRef er ence<Connecti on>(w apped, _ref Queue);
_cxt 2Ref . put (wr apped, ref);
_ref2Cxt. put(ref, wapped);
return w apped;
}
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Unit Testing and Reference Objects

It isn’t easy

* Running out of memory is harder than it looks
* System.gc() is just a hint
e Make sure that you don’t hold strong references to the referent

But you have to do it

» Reference objects become useful when living on the edge —
too easy to fall off if you don’t test

Build task-specific scaffolding

e Example: ResultSet implementation that returns large
byte[] s on every call to getObject()

Write development-only tests

e Sometimes Hotspot gets in the way
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Additional Reading

The “companion volume” to this presentation.
* http://www.kdgregory.com/index.php?page=java.refobj

Sun’s current whitepaper on tuning the garbage collector, which provides some

good background information on how the collector works (Sun JVM only).
* http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

An article from Brian Goetz, about using Weak references to associate objects with
limited lifetimes. I don’t often use this technique, so only touched on it lightly in this

presentation. I recommend reading his entire series of articles.

* http://'www.ibm.com/developerworks/java/library/j-
jtp11225/index.html?S_TACT=105AGX02&S_CMP=EDU
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