
WTF is
[Ljava/lang/String;

?!?
A deep dive into the shallow end of the JVM

A Word From Our Sponsor

The Compiler (javac)

Translates Java source code into .class files
○ Requires access to all referenced classes

OpenJDK (Sun/Oracle) version is intentionally
simple, relies on Hotspot for optimization

The Classfile

Every class has its own .class file
○ Including nested/inner classes

Contains compiled bytecode, along with
metadata

○ Method signatures, field definitions
○ Names for all referenced classes/methods
○ Debugging information

Classloading

Classes are loaded by a ClassLoader
○ Classloaders form a hierarchy
○ Files loaded by different loaders are different classes

Classes are loaded as needed
○ Can be slow if network involved
○ “Commonly used” classes are preloaded

Classloading, continued

Each class is verified as it’s loaded
○ Bytecode is valid
○ No invalid memory accesses
○ No attempt to override access control

After verification, static initializers run
○ Can trigger loading of additional classes

The JVM

A RISC emulator running on a CISC processor
○ Stack-based
○ Limited data types
○ Each operation specified by 1-byte code

Supported operations driven by Java language

A Stack-Based Processor

iconst 12 iconst 13 iadd istore_1

12

12

13 25

Two Types of Stacks

Operand Stack
○ Values for arithmetic operations
○ References for method invocations

Call Stack
○ Local Variables and Method Parameters
○ 32-bit-wide slots, numbered 0 .. N
○ Instance methods put reference to object in slot 0

Limited Data Types

Each “slot” in stack is 32-bits wide

Fully supported: int, long, float, double

Promoted: byte, short, char, boolean

Arrays stored at “native” size

Object field size implementation-dependent

Types of JVM Operations
Load/store local variable

Load/store field (static or instance)

Arithmetic

Test/Branch

New

Monitor entry/exit (synchronization)

Throw

Types of Method Invocations
Static

Special (private, constructor, super)

Virtual (protected, package, public)

Interface

Dynamic

Virtual Method Dispatch
java.util.AbstractListjava.lang.Object java.util.ArrayList

equals

hashCode

toString

…

add

get

size

…

toArray

…

equals

hashCode

toString

…

equals

hashCode

toString

…

add

get

size

…

Interface Dispatch
java.util.ArrayList

equals

hashCode

toString

…

add

get

size

…

toArray

…

List<String> myList = // …
String first = myList.get(0)

java.util.LinkedList

equals

hashCode

toString

…

size

get

add

…

toArray

…

Example: Java
public static void main(String[] argv)
{

for (int ii = 1 ; ii < 10 ; ii += 2)
{

 System.out.println(ii);
}

}

Example: Bytecode
public static void main(java.lang.String[]);
 Code:
 0: iconst_1
 1: istore_1
 2: goto 15
 5: getstatic #16; //Field java/lang/System.out:Ljava/io/PrintStream;
 8: iload_1
 9: invokevirtual #22; //Method java/io/PrintStream.println:(I)V
 12: iinc 1, 2
 15: iload_1
 16: bipush 10
 18: if_icmplt 5
 21: return
}

Hotspot
Runtime optimizer for frequently-called code

○ Replace interpreted code by native
○ “Traditional” compiler optimizations
○ Function inlining
○ Replace interface invocation if only one impl

General JVM Performance Tweaks
○ Heap management
○ Intrinsics
○ ...

Watching Hotspot at Work
-XX:+PrintCompilation

○ Writes console messages as functions compiled

-XX:+PrintInlining
○ Writes console messages as functions inlined
○ Requires -XX:+UnlockDiagnosticVMOptions

-XX:+PrintAssembly
○ Writes generated machine code
○ Requires -XX:+UnlockDiagnosticVMOptions
○ Requires disassembler agent

Myths and
Misconceptions
And maybe a few uncomfortable truths

Java is Slow!

Until Hotspot kicks in, JVM is an interpreter
○ And even Hotspot can’t match hand-tuned libraries

Startup loads lots of classes
○ Don’t use Spring for a command-line filter app

GC can create inconvenient pauses

Java Uses Too Much Memory!

Don’t confuse virtual and resident memory
○ JVM will reserve max heap from OS
○ OS will assign physical memory as needed

Memory is under $15/Gb
But that isn’t a license to go wild

○ Large heaps == lots of garbage when collector runs
○ Over-committing can lead to big problems

We Need Obfuscation!

Simple Bytecode + Symbolic Names
= Easy to Decompile

○ Java stores method/variable names in classfile, unlike
“compiled” languages

○ Obfuscators work by changing names
○ Are names really the barrier to understanding?

We Need Obfuscation!

Simple Bytecode + Symbolic Names
= Easy to Decompile?

○ Java stores method/variable names in classfile, unlike
“compiled” languages

○ Obfuscators work by changing names
○ Are names really the barrier to understanding?

If you still want to obfuscate, use Scala

Always use StringBuilder!
public String concat1(
 String s1,
 String s2,
 String s3)
{

return s1 + s2 + s3;
}

public String concat2(
 String s1,
 String s2,
 String s3)
{

StringBuilder sb
 = new StringBuilder();

sb.append(s1);
sb.append(s2);
sb.append(s3);
return sb.toString();

}

The JVM Can’t Do Tail Recursion!

Definition:
tail call is last call
in method

Optimization:
replace call by
jump

public int foo(int x)
{

// do something
return bar(y);

}

public int bar(int x)
{

// do something
return bar(y);

}

tail call

tail-call
recursion

Of course it can!

You just need goto and static analysis
○ Scala supports tail-recursive methods

Hotspot doesn’t need to play by the rules

The JVM does apply some constraints
○ goto is limited to intra-method jumps
○ Can’t combine methods from different classes

For More Information
Generating bytecode listings

○ javap -c FULLY.QUALIFIED.CLASSNAME

List undocumented JVM options
○ java -XX:+UnlockDiagnosticVMOptions -XX:+PrintFlagsFinal

JVM Spec
○ http://docs.oracle.com/javase/specs/jvms/se7/html/index.html

Hotspot Internals Wiki
○ https://wikis.oracle.com/display/HotSpotInternals/Home

